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We investigate theoretically how the vectorial nature of polychromatic electromagnetic fields results in
polarization components with different spectral characteristics, thus leading to redshifts, blueshifts, and spectral
distributions with multiple peaks. We discuss how these effects can be used to design spatially localized spectra
with tailored spectral densities.
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I. INTRODUCTION

With an increasing number of new applications, it be-
comes more and more important to understand the properties
of polychromatic light. Both pulsed and continuous waves
play fundamental roles in a number of spectroscopic sys-
tems, and it is therefore necessary to probe their spectral
distributions �1–13�. Recent studies have demonstrated that
spectral changes can take place in various classes of poly-
chromatic scalar waves propagating in free space �1–3�. In
particular, it was shown that diffracted waves exhibit drastic
spectral shifts near regions of zero intensity, thus resulting in
a number of interesting spectral characteristics �1–6�. Here
we aim at studying the influence of the electromagnetic char-
acter on such spectral shifts. In particular we show that in-
terfering waves with different wave vectors will in general
exhibit electric field components with different spectral den-
sities. This fact can be used to shape the light in, e.g., a
Michelson interferometer, where the path difference between
the waves play an essential role. We also show that the po-
larization distribution of a strongly focused wave will funda-
mentally alter the spectral density of the waves. These phe-
nomena may help us shaping the spectral density of a wave,
both globally and locally, and could therefore be of interest
in spectroscopic systems.

II. SPECTRAL DENSITY OF INTERFERING
PLANE WAVES

Consider two waves with propagation vectors k1
=−k sin � êx+k cos � êz and k2=k sin � êx+k cos � êz, where
k is the wave number and � is the half-angle between the
propagation vectors. The geometry is shown in Fig. 1, which
also shows the directions of the electric field vectors. The
two waves have the same amplitude, but travel different
paths �as in a Michelson interferometer�, thus resulting in a
time lag �=s /c between them, where s is the path difference
and c is the speed of light. The two interfering waves have
electric field vectors E1�r , t� and E2�r , t−��. The total field
E�r , t�=Ex�r , t�êx+Ez�r , t�êz is a sum of the two interfering
fields E�r , t�=E1�r , t�+E2�r , t−��. We write the electric field
vectors as

E1�r,t� = E1�r,t� cos � êx + E1�r,t� sin � êz �1�

and

E2�r,t − �� = E2�r,t − �� cos � êx − E2�r,t − �� sin � êz,

�2�

where êx and êz are unit vectors in the x and z directions,
respectively. In the complex analytic representation the elec-
tric field vector can be written as

E�r,t� = �
0

�

Ẽ�r,�� exp�ik · r − i�t�d� , �3�

where

Ẽ��� =
1

2�
�

0

�

E�t� exp�i�t�d� . �4�

We can now write the x and z components of the total
field as

Ex�r,t� = cos ��
0

�

Ẽ0�r,���exp�i k1 · r�

+ exp�i k2 · r + i���� exp�− i�t�d� �5�

and

Ez�r,t� = sin ��
0

�

Ẽ0�r,���exp�i k1 · r�

− exp�i k2 · r + i���� exp�− i�t�d� , �6�

where Ẽ0�r ,��= Ẽ1�r ,��= Ẽ2�r ,�� since the two interfering
beams have the same amplitude. The time-independent, av-
erage intensity of the electromagnetic wave is proportional to
��E�t��2�, and we will therefore write I= ��E�r , t��2�, where
�¯� denotes the average. We will also require that the field is

stationary, so that �Ẽ0�r ,�1�Ẽ0
*�r ,�2��=Si�r ,�1����1−�2�,

FIG. 1. Two waves with different propagation directions and
electric field vectors are interfering.
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where Si�r ,�1� is the incident spectral density of the two
beams. It can now be seen that

��Ex�2� = 2 cos2��
0

�

Si�r,��	1 + cos
2kx sin � + �
s

c
��d�

�7�

and

��Ez�2� = 2 sin2��
0

�

Si�r,��	1 − cos
2kx sin � + �
s

c
��d� .

�8�

We assume that the original spectral density is independent
of position so that Si�r ,��=Si���. We thus see that the
x-polarized light has an effective spectral density propor-
tional to Si���1+cos�2kx sin �+��s /c���, whereas the
z-polarized light has an effective spectral density propor-
tional to Si���1−cos�2kx sin �+��s /c���. Thus, we have
shown that different polarization components give rise to dif-
ferent spectra which depend on the position in the interfer-
ence pattern. This fact should be accounted for when study-
ing the spectral characteristics of diverging or converging
light in interferometric geometries.

After summing up the contributions from the x and z com-
ponents, we get the total intensity

I�x,�� = 2�
0

�

Si���	1 + cos�2�� cos
2kx sin � + �
s

c
��d� ,

�9�

where the total spectral density is given by

S�x,�,�� = Si���	1 + cos�2�� cos
2kx sin � + �
s

c
�� .

�10�

When �=45� we notice that there is no interference since the
two waves are orthogonally polarized, and the original spec-
tral density is retrieved.

To see how the spectrum is modified by the interference,
we will now assume that we are located at x=0 and that the
original spectrum is Gaussian, i.e.,

Si��� = exp	−
�� − �0�2

�2 � . �11�

Figure 2 shows the normalized spectral density �Eq. �10�� for
two interfering waves when �=0�. The dashed line corre-
sponds to the incident Gaussian spectrum Si��� with center
frequency �0=3�10−15 s−1 and �=0.1�0. The dotted line
represents the spectral density found when s=0.25 	m,
whereas the solid line corresponds to s=0.45 	m. From this
figure it is seen that as we increase the difference in path-
length s the spectrum first experiences a redshift and then a
blueshift. If we increase s substantially, we notice that the
spectral density exhibits rapid oscillations as we move
through the available frequency content. This is seen in Fig.
3, where the solid line is the spectrum found when s
=30 	m. Now we have multiple peaks with frequency dif-

ference �between neighbor peaks� given by 
�=2�c /s. The
number of peaks generated is approximately given by N
�4� /
�, and for s=30 	m it is N�19.

The use of interfering waves to investigate the spectrum
of lasers and other light sources is a well studied topic, and
has been used in spectroscopic systems for decades �14,15�.
However, here we point out that an interferometric setup can
conveniently modify the spectral characteristics of beams,
thus enabling us to tailor the spectral density. In particular
we emphasize that the various polarization components may
have different spectral densities. To this end, Fig. 4 shows
the normalized spectral density for the x �solid line� and z
�dotted line� polarization components when x=0, �=45�, and
s=0.25 	m. The dashed line corresponds to the incident
Gaussian spectrum Si��� with center frequency �0=3
�10−15 s−1 and �=0.1�0. It is seen that while the x compo-
nent is strongly redshifted, the z component is slightly blue-
shifted.

FIG. 2. The figure shows the normalized spectral density for two
interfering waves when �=0�. The dashed line corresponds to the
incident Gaussian spectrum Si��� with center frequency �0=3
�10−15 s−1 and �=0.1�0. The dotted line is the red shifted spec-
trum found when s=0.25 	m, whereas the solid line is the blue
shifted spectrum found when s=0.45 	m.

FIG. 3. The figure shows the normalized spectral density for two
interfering waves when �=0�. The dashed line corresponds to the
incident Gaussian spectrum Si��� with center frequency �0=3
�10−15 s−1 and �=0.1�0, whereas the solid line is the spectrum
found when s=30 	m.
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III. SPECTRAL DENSITY OF FOCUSED WAVES

In the particular case discussed above there is a 180�

phase difference between the z polarization components of
the two interfering waves which gives rise to a relatively
simple change in the spectral density. However, in many situ-
ations the polarization distributions are more complex, thus
leading to significantly altered intensity distributions and
therefore also spectral densities. Here we will take one step
further and investigate what happens to the spectral density
of the various polarization components when a wave is fo-
cused with high angular aperture to a tight focal spot. In
order to proceed we will make two approximations. First we
will assume that the transmission through the aperture of the
high aperture focusing system is independent of the wave-
length. Thus, the shape and size of the spatially coherent,
incoming beam is only determined by the aperture itself.
This is a reasonable approximation if the aperture �of radius
a� is overfilled such that the diameter of the input beam is
larger than 2a. We will also assume that the focal length of
the system is constant and independent of wavelength. This
can be obtained by designing, e.g., a parabolic mirror or a
lens system which focuses each wavelength at the same focal
point. Using the Debye approximation, the coherent electric
field vector of a single spectral component of spectral
strength A��� can near the focal plane be expressed as
�16,17�

E�r,�� = −
ikA���

2�
� �

�

T�s�
sz

exp�ik�sxx + syy + szz��dsxdsy ,

�12�

where k=� /c is the wave number in vacuum, s= �sx ,sy ,sz� is
the unit vector along a typical ray, � is the solid angle
formed by all the geometrical rays, T�s� is the vector pupil
distribution which accounts for the polarization, phase and
amplitude distributions at the exit pupil. We emphasize that

Eq. �12� is only valid as long as the Fresnel number N is
much larger than unity, i.e., N=a2 /�f 1, where f is the
focal length �17�. Moreover, care must be taken such that the
wavelength span of the polychromatic wave does not cause a
violation of the requirement N1 �the longest wavelength
must still give N1�.

We now consider a circular symmetric focusing system,
see Fig. 5. In spherical coordinates, the unit wave vector is
defined as

s = �sin � cos �,sin � sin �,cos �� . �13�

The position vector can be written as

rc = �rcsin �c cos �c,rc sin �c sin �c,z� , �14�

where we for the rest of the paper set r=rc sin �c, which
represents a projection onto the focal plane. For a system of
numerical aperture NA=sin � Eq. �12� gives the following
diffraction integral:

E�r,�� = −
i�A���

2�c
�

0

� �
0

2�

T��,�� exp�ikr sin � cos�� − �c�

+ ikz cos �� sin � d� d� , �15�

where � is the convergence semiangle and the amplitude
vector for each ray is given by

T��,�� = C��,��P��,�� . �16�

Here C�� ,�� is the transmittance function and P�� ,�� is the
polarization distribution, see Refs. �13,18�. It should be
noted that C�� ,�� can be applied to any focusing systems.
As a special case we also see that if the incoming beam is
formed into a bright ring at the exit pupil, it can be described
approximately by a delta function C���=���−�0�, where �0

is the angular location of the ring at the aperture.
It is important to emphasize that the x, y, and z compo-

nents are governed by different dependencies on �, which
may give rise to different spectral characteristics for each
polarization component �13�. In particular we expect highly
asymmetric polarization distributions to give rise to different
spectra for each polarization component. However, also in
the case of symmetric distributions significant spectral
anomalies may occur. As an example we first assume a fo-
cused scalar wave with P= �1,0 ,0� and C���=���−90��,
which upon integrating Eq. �15� results in the following
spectral density in the focal region:

FIG. 4. The figure shows the normalized spectral density for the
x �solid line� and z �dotted line� polarization components when x
=0, �=45�, and s=0.25 	m. The dashed line corresponds to the
incident Gaussian spectrum Si��� with center frequency �0=3
�10−15 s−1 and �=0.1�0. It is seen that while the x component is
strongly redshifted, the z component is slightly blueshifted, and
their spectra differ considerably.

FIG. 5. Schematic drawing of the focusing geometry. Each ray
is directed towards the origin of the coordinate system, which co-
incides with the focal point. The solid angle � defines the angular
content of the focused rays.
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Ssc��� = �2Si���J0
2
�

c
r� , �17�

where J0��r /c� is a Bessel function of the first kind and
order 0 and Si��� is the spectral density of the beam entering
the focusing system �Si���� �A����2�. On the other hand,
if we consider an azimuthal polarization distribution with
P= �sin � ,−cos � ,0� and C���=���−90�� we obtain the fol-
lowing spectral density in the focal region:

Saz��� = �2Si���J1
2
�

c
r� , �18�

where J1��r /c� is a Bessel function of the first kind and
order 1. Both Eqs. �17� and �18� belong to the class of “dif-
fraction free” beams discussed in Refs. �19,20� �see also
Refs. �13,21��, and there is almost no broadening of the beam
in the vicinity of the focal plane. It is also easy to see that
they produce very different spectral densities in the focal
region. When r�c /�, we notice that Ssc��2Si��� while
Saz��3Si���, and an azimuthal polarization distribution will
therefore be more blue shifted at very small distances. This is
seen in Fig. 6, where the normalized spectral densities are
displayed for r=0.01 	m. The dashed line corresponds to
the incident Gaussian spectrum �Eq. �11��, with center fre-
quency �0=3�10−15 s−1 and �=0.1�0. Upon moving fur-
ther away from the optical axis, it is seen that the spectral
density of the scalar bessel beam starts to decrease more
rapidly with increasing frequency thus resulting in a net red-
shift. On the other hand, it can be shown that Eq. �18� ob-
tains its maximum value when r=0.15 	m for the largest
frequency in the incident Gaussian spectral density, and the
azimuthal spectral distribution will only be redshifted when
r�0.25 	m. This situation is depicted in Fig. 7, where the
normalized spectral densities are displayed for r=0.17 	m.
Here the scalar Bessel beam is redshifted while the azimuth-
ally polarized Bessel beam is blueshifted.

As discussed in Refs. �2,4� spectral singularities occur in
regions of zero intensity. This phenomenon can be noted
from Fig. 8, which shows the normalized spectral density for
the scalar Bessel beam �solid line� and the azimuthally po-
larized Bessel beam �dash-dotted line� when r=0.22 	m. It
is seen that the spectral density of the azimuthally polarized
Bessel beam is nearly identical to that of the incident beam
�Gaussian distribution�, while the scalar Bessel beam is
strongly redshifted. Also shown is the normalized spectral
density for the scalar Bessel beam when r=0.26 	m �dotted
line�, and in this case the spectrum is strongly blueshifted.
The quick spatial change from redshift to blueshift is a sign
of a spectral singularity �2,4,6�.

FIG. 6. The figure shows the normalized spectral density for the
scalar Bessel beam �solid line� and the azimuthally polarized Bessel
beam �dash-dotted line� when r=0.01 	m. The dashed line corre-
sponds to the incident Gaussian spectrum Si��� with center fre-
quency �0=3�10−15 s−1 and �=0.1�0. It is seen that the azimuth-
ally polarized Bessel beam is more blueshifted than the scalar
Bessel beam.

FIG. 7. The figure shows the normalized spectral density for the
scalar Bessel beam �solid line� and the azimuthally polarized Bessel
beam �dash-dotted line� when r=0.17 	m. The dashed line corre-
sponds to the incident Gaussian spectrum Si��� with center fre-
quency �0=3�10−15 s−1 and �=0.1�0. It is seen that the azimuth-
ally polarized Bessel beam is blueshifted while the scalar Bessel
beam is redshifted.

FIG. 8. The figure shows the normalized spectral density for the
scalar Bessel beam �solid line� and the azimuthally polarized Bessel
beam �dash-dotted line� when r=0.22 	m. The dashed line corre-
sponds to the incident Gaussian spectrum Si��� with center fre-
quency �0=3�10−15 s−1 and �=0.1�0. It is seen that the spectral
density of the azimuthally polarized Bessel beam is nearly identical
to the incident Gaussian distributions, while the scalar Bessel beam
is strongly redshifted. Also shown is the normalized spectral density
for the scalar Bessel beam when r=0.26 	m �dotted line�, and it is
clear that now the spectrum is strongly blueshifted.
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If we move far away from the optical axis, it is interesting
to note that the Bessel functions oscillate more rapidly as we
scan through the frequency range of the polychromatic
waves, and several regions of zero intensity may be avail-
able. This phenomenon is equivalent to that observed in the

previous section, where an increase in the path difference s
=c� resulted in oscillations of the spectral density. Figure 9
shows the normalized spectral density for the scalar Bessel
beam �solid line� and the azimuthally polarized Bessel beam
�dash-dotted line� when r=10 	m. As in Fig. 3, multiple
peaks are observed in the spectrum, although slightly shifted
away from the center of the Gaussian envelope due to the
decaying nature of the Bessel functions. We also note that
peaks of the scalar and azimuthally polarized Bessel beams
are almost out of “phase” such that when Ssc��� is at its
maximum then Saz��� is at its minimum. This effect could be
used in designing focused light with localized spectral char-
acteristics, where the incident polarization distribution deter-
mines the position of the peaks as seen in Fig. 9.

IV. CONCLUSION

We have studied the influence of phase shifts and polar-
ization distributions on the spectral density of polychromatic
electromagnetic waves. We found that the different polariza-
tion components in general have different spectral character-
istics, thus leading to a spectral density that differs from the
scalar case. We suggest that these effects can be used
to design spatially located spectra with tailored spectral
densities.
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